Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest New Drugs ; 39(3): 658-669, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33313978

RESUMO

Background Statins inhibit the cholesterol biosynthesis and are used as cholesterol-lowering agents in fat-metabolism disorders. Furthermore, several studies state that statins have supportive functions in breast cancer treatment. Therefore, simvastatin (SVA) as a potential radiosensitizer should be investigated on the basis of human breast cells. Methods First, an optimal concentration of SVA for normal (MCF10A) and cancer (MCF-7) cells was identified via growth and cytotoxicity assays that, according to the definition of a radiosensitizer in the narrower sense, enhances the effect of radiation therapy but has no cytotoxic effect. Next, in combination with radiation SVA's influence on DNA repair capacity and clonogenic survival in 2D and 3D was determined. Furthermore cell cycle distribution, expression of survivin and connective tissue growth factor (CTGF) as well as ERK1 map kinase were analysed. Results 1 µM SVA was identified as highest concentration without an influence on cell growth and cytotoxicity and was used for further analyses. In terms of early and residual γH2AX-foci, SVA affected the number of foci in both cell lines with or without irradiation. Different radiation responses were detected in 2D and 3D culture conditions. During the 2D cultivation, a radiosensitizing effect within the clonogenic survival was observable, but not in 3D. Conclusion The present study suggests that SVA may have potential for radiosensitization. Therefore, it is important to further investigate the role of SVA in relation to the extent of radiosensitization and how it could be used to positively influence the therapy of breast cancer or other entities.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Radiossensibilizantes/farmacologia , Sinvastatina/farmacologia , Mama/citologia , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Fenômenos Fisiológicos Celulares/efeitos da radiação , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Histonas/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Survivina/metabolismo
2.
J Immunol Res ; 2019: 9645481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565662

RESUMO

PURPOSE: Most tumours are characterized by an inflammatory microenvironment, and correlations between inflammation and cancer progression have been shown. Endothelial cells (ECs), as part of the tumour microenvironment, play a crucial role in inflammatory processes as well as in angiogenesis and could be critical targets of cancer therapy like irradiation. Therefore, in the present study we investigated the effect of ionizing radiation on endothelial cells under inflammatory conditions and their interactions with tumour cells. METHODS: Nonactivated and TNF-α treatment-activated human EC EA.hy926 were irradiated with doses between 0.1 Gy and 6 Gy with a linear accelerator. Using a multiplex assay, the accumulation of various chemokines (IL-8, MCP-1, E-selectin, and P-selectin) and soluble adhesion molecules (sICAM-1 and VCAM-1) as well as protein values of the vascular endothelial growth factor (VEGF) was measured in the supernatant at different time points. The adhesion capability of irradiated and nonirradiated A549 tumour cells to EA.hy926 cells was measured using flow cytometry, and the migration of tumour cells was investigated with a scratch motility assay. RESULTS: In contrast to unirradiated cells, IR of ECs resulted in a modified release of chemokines IL-8 and MCP-1 as well as the adhesion molecules sICAM-1 and VCAM-1 in the EC, whereas concentrations of E-selectin and P-selectin as well as VEGF were not influenced. IR always affected the adhesion capability of tumour cells to ECs with the effect dependent on the IR-treated cell type. TNF-α treatment generally increased adhesion ability of the tumour cells. Tumour cell migration was clearly inhibited after IR. This inhibitory effect was eliminated for radiation doses from 0.5 to 2 Gy when, additionally, an inflammatory environment was predominant. CONCLUSIONS: Our results support past findings suggesting that ECs, as part of the inflammatory microenvironment of tumours, are important regulators of the actual tumour response to radiation therapy.


Assuntos
Comunicação Celular/efeitos da radiação , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Radiação Ionizante , Células A549 , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Int J Radiat Biol ; 95(1): 23-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29883248

RESUMO

PURPOSE: The application of radiation therapy (RT) is not only used to treat cancer, in Germany, it is also an accepted and empirically established treatment of patients with benign diseases at low doses. The immune modulatory response generated by low-dose RT has a supporting anti-inflammatory effect within the treatment of inflammation-related diseases. The aim of this study was to investigate the effect of ionizing radiation (IR) on the expression and secretion of inflammatory mediators by endothelial cells (ECs) exposed to low and moderate doses. METHODS: Non-activated and activated EC were irradiated with doses between 0.01 Gy and 2 Gy with X-rays. Using a multiplex-assay, protein values of interleukin-8 (IL-8), granulocyte macrophage colony-stimulating factor (G-CSF) and platelet-derived growth factor (PDGF-BB) were measured in the supernatant at different time-points. To investigate possible differences between mRNA expression and protein secretion after IR, the mRNA expression of IL-8, G-CSF and PDGF-BB was determined by real-time quantitative PCR. RESULTS: Radiation treatment caused non-linear dose dependent effects on pro-inflammatory cytokine secretion of IL-8; G-CSF and PDGF-BB. The mRNA-expression levels of those cytokines were non-linear dose-dependent and differed from protein level in the culture supernatant. CONCLUSIONS: This study provides deeper insights into the radiobiological effects of radiation doses below 0.3 Gy, in particular 0.05 Gy, and their significant immunomodulatory properties on EC, which is very important in order to assess the effect of LD-IR on EC.


Assuntos
Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Imunomodulação/efeitos da radiação , Biomarcadores/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transcriptoma/efeitos da radiação
4.
Int J Mol Sci ; 19(7)2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29986519

RESUMO

Within their niche, adipose-derived stem cells (ADSCs) are essential for homeostasis as well as for regeneration. Therefore, the interest of physicians is to use ADSCs as a tool for radiation oncology and regenerative medicine. To investigate related risks, this study analyses the radiation response of adult stem cells isolated from the adipose tissue of the female breast. To avoid donor-specific effects, ADSCs isolated from breast reduction mammoplasties of 10 donors were pooled and used for the radiobiological analysis. The clonogenic survival fraction assay was used to classify the radiation sensitivity in comparison to a more radiation-sensitive (ZR-75-1), moderately sensitive (MCF-7), and resistant (MCF10A) cell lines. Afterwards, cytotoxicity and genotoxicity of irradiation on ADSCs were investigated. On the basis of clonogenic cell survival rates of ADSCs after irradiation, we assign ADSCs an intermediate radiation sensitivity. Furthermore, a high repair capacity of double-strand breaks is related to an altered cell cycle arrest and increased expression of cyclin-dependent kinase (CDK) inhibitor p21. ADSCs isolated from breast tissue exhibit intermediate radiation sensitivity, caused by functional repair mechanisms. Therefore, we propose ADSCs to be a promising tool in radiation oncology.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/citologia , Mama/citologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Tolerância a Radiação , Regulação para Cima , Tecido Adiposo/efeitos da radiação , Células-Tronco Adultas/efeitos da radiação , Mama/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Células MCF-7 , Mamoplastia , Nicho de Células-Tronco/efeitos da radiação
5.
Cytotechnology ; 70(2): 701-711, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29188405

RESUMO

Partial breast irradiation of early breast cancer patients after lumpectomy and the use of endogenous adipose tissue (AT) for breast reconstruction are promising applications to reduce the side effects of breast cancer therapy. This study tries to investigate the possible risks associated with these therapeutic approaches. It also examines the influence of adipose derived stem cells (ADSCs) as part of the breast cancer microenvironment, and endogenous AT on breast cancer cells following radiation therapy. ADSCs, isolated from human reduction mammoplasties of healthy female donors, exhibited multilineage capacity and specific surface markers. The promoting effects of ADSCs on the growth and survival fraction of breast cancer cells were reversed by treatment with high (8 Gy) or medium (2 Gy) radiation doses. In addition, a suppressing influence on breast cancer growth could be detected by co-culturing with irradiated ADSCs (8 Gy). Furthermore the clonogenic survival of unirradiated tumor cells was reduced by medium of irradiated ADSCs. In conclusion, radiation therapy changed the interactions of ADSCs and breast cancer cells. On the basis of our work, the importance of further studies to exclude potential risks of ADSCs in regenerative applications and radiotherapy has been emphasized.

6.
Radiat Oncol ; 12(1): 159, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946898

RESUMO

BACKGROUND: As there is a growing number of long-term cancer survivors, the incidence of carcinogenesis as a late effect of radiotherapy is getting more and more into the focus. The risk for the development of secondary malignant neoplasms might be significantly increased due to exposure of healthy tissue outside of the target field to secondary neutrons, in particular in proton therapy. Thus far, the radiobiological effects of these neutrons and a comparison with photons on normal breast cells have not been sufficiently characterised. METHODS: MCF10A cells were irradiated with doses of up to 2 Gy with neutrons of different energy spectra and X-rays for comparison. The biological effects of neutrons with a broad energy distribution ( = 5.8 MeV), monoenergetic neutrons (1.2 MeV, 0.56 MeV) and of the mixed field of gamma's and secondary neutrons ( = 70.5 MeV) produced by 190 MeV protons impinging on a water phantom, were analysed. The clonogenic survival and the DNA repair capacity were determined and values of relative biological effectiveness were compared. Furthermore, the influence of radiation on the sphere formation was observed to examine the radiation response of the potential fraction of stem like cells within the MCF10A cell population. RESULTS: X-rays and neutrons caused dose-dependent decreases of survival fractions after irradiations with up to 2 Gy. Monoenergetic neutrons with an energy of 0.56 MeV had a higher effectiveness on the survival fraction with respect to neutrons with higher energies and to the mixed gamma - secondary neutron field induced by proton interactions in water. Similar effects were observed for the DNA repair capacity after exposure to ionising radiation (IR). Both experimental endpoints provided comparable values of the relative biological effectiveness. Significant changes in the sphere formation were notable following the various radiation qualities. CONCLUSION: The present study compared the radiation response of MCF10A cells after IR with neutrons and photons. For the first time it was shown that monoenergetic neutrons with energies around 1 MeV have stronger radiobiological effects on normal human breast cells with respect to X rays, to neutrons with a broad energy distribution ( = 5.8 MeV), and to the mixed gamma - secondary neutron field given by interactions of 190 MeV protons in water. The results of the present study are highly relevant for further investigations of radiation-induced carcinogenesis and are very important in perspective for a better risk assessment after secondary neutron exposure in the field of conventional and proton radiotherapy.


Assuntos
Mama/efeitos da radiação , Nêutrons/efeitos adversos , Prótons/efeitos adversos , Eficiência Biológica Relativa , Linhagem Celular , Humanos , Radioterapia/efeitos adversos , Radioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...